Logo Search packages:      
Sourcecode: uncrustify version File versions

md5.cpp

/**
 * This code implements the MD5 message-digest algorithm.
 * The algorithm is due to Ron Rivest.    This code was
 * written by Colin Plumb in 1993, no copyright is claimed.
 * This code is in the public domain; do with it what you wish.
 *
 * Equivalent code is available from RSA Data Security, Inc.
 * This code has been tested against that, and is equivalent,
 * except that you don't need to include two pages of legalese
 * with every copy.
 *
 * To compute the message digest of a chunk of bytes, declare an
 * MD5Context structure, pass it to MD5Init, call MD5Update as
 * needed on buffers full of bytes, and then call MD5Final, which
 * will fill a supplied 16-byte array with the digest.
 *
 * @license Public Domain / GPL v2+
 */

#include "md5.h"
#include <string.h>               /* memcpy, memset */


/**
 * Reverse the bytes in 32-bit chunks.
 * 'buf' might not be word-aligned.
 *
 * @param buf     The byte array to reverse
 * @param n_u32   The number of UINT32's in the data
 */
void MD5::reverse_u32(UINT8 *buf, int n_u32)
{
   UINT8 tmp;

   if (m_big_endian)
   {
      /* change { 4, 3, 2, 1 } => { 1, 2, 3, 4 } */
      while (n_u32-- > 0)
      {
         tmp    = buf[0];
         buf[0] = buf[3];
         buf[3] = tmp;

         tmp    = buf[1];
         buf[1] = buf[2];
         buf[2] = tmp;

         buf += 4;
      }
   }
   else
   {
      /* change { 4, 3, 2, 1 } => { 3, 4, 1, 2 } */
      while (n_u32-- > 0)
      {
         tmp    = buf[0];
         buf[0] = buf[1];
         buf[1] = tmp;

         tmp    = buf[2];
         buf[2] = buf[3];
         buf[3] = tmp;

         buf += 4;
      }
   }
}


MD5::MD5()
{
   m_buf[0] = 0x01020304;

   /*
    * Little endian = { 4, 3, 2, 1 }
    * Big endian    = { 1, 2, 3, 4 }
    * PDP endian    = { 3, 4, 1, 2 }
    *
    * The MD5 stuff is written for little endian.
    */

   m_need_byteswap = *(UINT8 *)m_buf != 4;
   m_big_endian    = *(UINT8 *)m_buf == 1;
}


/**
 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
 * initialization constants.
 */
void MD5::Init()
{
   m_buf[0] = 0x67452301;
   m_buf[1] = 0xefcdab89;
   m_buf[2] = 0x98badcfe;
   m_buf[3] = 0x10325476;

   m_bits[0] = 0;
   m_bits[1] = 0;
}


/**
 * Update context to reflect the concatenation of another buffer full
 * of bytes.
 */
void MD5::Update(const void *data, UINT32 len)
{
   const UINT8 *buf = (const UINT8 *)data;
   UINT32      t;

   /* Update bitcount */
   t = m_bits[0];
   if ((m_bits[0] = t + ((UINT32)len << 3)) < t)
   {
      m_bits[1]++;   /* Carry from low to high */
   }
   m_bits[1] += len >> 29;

   t = (t >> 3) & 0x3f;   /* Bytes already in shsInfo->data */

   /* Handle any leading odd-sized chunks */
   if (t)
   {
      UINT8 *p = (UINT8 *)m_in + t;

      t = 64 - t;
      if (len < t)
      {
         memcpy(p, buf, len);
         return;
      }
      memcpy(p, buf, t);
      if (m_need_byteswap)
      {
         reverse_u32(m_in, 16);
      }
      Transform(m_buf, (UINT32 *)m_in);
      buf += t;
      len -= t;
   }
   /* Process data in 64-byte chunks */

   while (len >= 64)
   {
      memcpy(m_in, buf, 64);
      if (m_need_byteswap)
      {
         reverse_u32(m_in, 16);
      }
      Transform(m_buf, (UINT32 *)m_in);
      buf += 64;
      len -= 64;
   }

   /* Save off any remaining bytes of data */
   memcpy(m_in, buf, len);
}


/**
 * Final wrapup - pad to 64-byte boundary with the bit pattern
 * 1 0* (64-bit count of bits processed, MSB-first)
 */
void MD5::Final(UINT8 digest[16])
{
   UINT32 count;
   UINT8  *p;

   /* Compute number of bytes mod 64 */
   count = (m_bits[0] >> 3) & 0x3F;

   /* Set the first char of padding to 0x80.  This is safe since there is
    * always at least one byte free */
   p    = m_in + count;
   *p++ = 0x80;

   /* Bytes of padding needed to make 64 bytes */
   count = 64 - 1 - count;

   /* Pad out to 56 mod 64 */
   if (count < 8)
   {
      /* Two lots of padding:  Pad the first block to 64 bytes */
      memset(p, 0, count);
      if (m_need_byteswap)
      {
         reverse_u32(m_in, 16);
      }
      Transform(m_buf, (UINT32 *)m_in);

      /* Now fill the next block with 56 bytes */
      memset(m_in, 0, 56);
   }
   else
   {
      /* Pad block to 56 bytes */
      memset(p, 0, count - 8);
   }
   if (m_need_byteswap)
   {
      reverse_u32(m_in, 14);
   }

   /* Append length in bits and transform */
   ((UINT32 *)m_in)[14] = m_bits[0];
   ((UINT32 *)m_in)[15] = m_bits[1];

   Transform(m_buf, (UINT32 *)m_in);
   if (m_need_byteswap)
   {
      reverse_u32((UINT8 *)m_buf, 4);
   }
   memcpy(digest, m_buf, 16);
}


/* The four core functions - F1 is optimized somewhat */

/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z)    (z ^ (x & (y ^ z)))
#define F2(x, y, z)    F1(z, x, y)
#define F3(x, y, z)    (x ^ y ^ z)
#define F4(x, y, z)    (y ^ (x | ~z))

/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
   (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x)

/*
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
 * reflect the addition of 16 longwords of new data.  MD5::Update blocks
 * the data and converts bytes into longwords for this routine.
 */
void MD5::Transform(UINT32 buf[4], UINT32 in_data[16])
{
   UINT32 a, b, c, d;

   a = buf[0];
   b = buf[1];
   c = buf[2];
   d = buf[3];

   MD5STEP(F1, a, b, c, d, in_data[0] + 0xd76aa478, 7);
   MD5STEP(F1, d, a, b, c, in_data[1] + 0xe8c7b756, 12);
   MD5STEP(F1, c, d, a, b, in_data[2] + 0x242070db, 17);
   MD5STEP(F1, b, c, d, a, in_data[3] + 0xc1bdceee, 22);
   MD5STEP(F1, a, b, c, d, in_data[4] + 0xf57c0faf, 7);
   MD5STEP(F1, d, a, b, c, in_data[5] + 0x4787c62a, 12);
   MD5STEP(F1, c, d, a, b, in_data[6] + 0xa8304613, 17);
   MD5STEP(F1, b, c, d, a, in_data[7] + 0xfd469501, 22);
   MD5STEP(F1, a, b, c, d, in_data[8] + 0x698098d8, 7);
   MD5STEP(F1, d, a, b, c, in_data[9] + 0x8b44f7af, 12);
   MD5STEP(F1, c, d, a, b, in_data[10] + 0xffff5bb1, 17);
   MD5STEP(F1, b, c, d, a, in_data[11] + 0x895cd7be, 22);
   MD5STEP(F1, a, b, c, d, in_data[12] + 0x6b901122, 7);
   MD5STEP(F1, d, a, b, c, in_data[13] + 0xfd987193, 12);
   MD5STEP(F1, c, d, a, b, in_data[14] + 0xa679438e, 17);
   MD5STEP(F1, b, c, d, a, in_data[15] + 0x49b40821, 22);

   MD5STEP(F2, a, b, c, d, in_data[1] + 0xf61e2562, 5);
   MD5STEP(F2, d, a, b, c, in_data[6] + 0xc040b340, 9);
   MD5STEP(F2, c, d, a, b, in_data[11] + 0x265e5a51, 14);
   MD5STEP(F2, b, c, d, a, in_data[0] + 0xe9b6c7aa, 20);
   MD5STEP(F2, a, b, c, d, in_data[5] + 0xd62f105d, 5);
   MD5STEP(F2, d, a, b, c, in_data[10] + 0x02441453, 9);
   MD5STEP(F2, c, d, a, b, in_data[15] + 0xd8a1e681, 14);
   MD5STEP(F2, b, c, d, a, in_data[4] + 0xe7d3fbc8, 20);
   MD5STEP(F2, a, b, c, d, in_data[9] + 0x21e1cde6, 5);
   MD5STEP(F2, d, a, b, c, in_data[14] + 0xc33707d6, 9);
   MD5STEP(F2, c, d, a, b, in_data[3] + 0xf4d50d87, 14);
   MD5STEP(F2, b, c, d, a, in_data[8] + 0x455a14ed, 20);
   MD5STEP(F2, a, b, c, d, in_data[13] + 0xa9e3e905, 5);
   MD5STEP(F2, d, a, b, c, in_data[2] + 0xfcefa3f8, 9);
   MD5STEP(F2, c, d, a, b, in_data[7] + 0x676f02d9, 14);
   MD5STEP(F2, b, c, d, a, in_data[12] + 0x8d2a4c8a, 20);

   MD5STEP(F3, a, b, c, d, in_data[5] + 0xfffa3942, 4);
   MD5STEP(F3, d, a, b, c, in_data[8] + 0x8771f681, 11);
   MD5STEP(F3, c, d, a, b, in_data[11] + 0x6d9d6122, 16);
   MD5STEP(F3, b, c, d, a, in_data[14] + 0xfde5380c, 23);
   MD5STEP(F3, a, b, c, d, in_data[1] + 0xa4beea44, 4);
   MD5STEP(F3, d, a, b, c, in_data[4] + 0x4bdecfa9, 11);
   MD5STEP(F3, c, d, a, b, in_data[7] + 0xf6bb4b60, 16);
   MD5STEP(F3, b, c, d, a, in_data[10] + 0xbebfbc70, 23);
   MD5STEP(F3, a, b, c, d, in_data[13] + 0x289b7ec6, 4);
   MD5STEP(F3, d, a, b, c, in_data[0] + 0xeaa127fa, 11);
   MD5STEP(F3, c, d, a, b, in_data[3] + 0xd4ef3085, 16);
   MD5STEP(F3, b, c, d, a, in_data[6] + 0x04881d05, 23);
   MD5STEP(F3, a, b, c, d, in_data[9] + 0xd9d4d039, 4);
   MD5STEP(F3, d, a, b, c, in_data[12] + 0xe6db99e5, 11);
   MD5STEP(F3, c, d, a, b, in_data[15] + 0x1fa27cf8, 16);
   MD5STEP(F3, b, c, d, a, in_data[2] + 0xc4ac5665, 23);

   MD5STEP(F4, a, b, c, d, in_data[0] + 0xf4292244, 6);
   MD5STEP(F4, d, a, b, c, in_data[7] + 0x432aff97, 10);
   MD5STEP(F4, c, d, a, b, in_data[14] + 0xab9423a7, 15);
   MD5STEP(F4, b, c, d, a, in_data[5] + 0xfc93a039, 21);
   MD5STEP(F4, a, b, c, d, in_data[12] + 0x655b59c3, 6);
   MD5STEP(F4, d, a, b, c, in_data[3] + 0x8f0ccc92, 10);
   MD5STEP(F4, c, d, a, b, in_data[10] + 0xffeff47d, 15);
   MD5STEP(F4, b, c, d, a, in_data[1] + 0x85845dd1, 21);
   MD5STEP(F4, a, b, c, d, in_data[8] + 0x6fa87e4f, 6);
   MD5STEP(F4, d, a, b, c, in_data[15] + 0xfe2ce6e0, 10);
   MD5STEP(F4, c, d, a, b, in_data[6] + 0xa3014314, 15);
   MD5STEP(F4, b, c, d, a, in_data[13] + 0x4e0811a1, 21);
   MD5STEP(F4, a, b, c, d, in_data[4] + 0xf7537e82, 6);
   MD5STEP(F4, d, a, b, c, in_data[11] + 0xbd3af235, 10);
   MD5STEP(F4, c, d, a, b, in_data[2] + 0x2ad7d2bb, 15);
   MD5STEP(F4, b, c, d, a, in_data[9] + 0xeb86d391, 21);

   buf[0] += a;
   buf[1] += b;
   buf[2] += c;
   buf[3] += d;
}

void MD5::Calc(const void *data, UINT32 length, UINT8 digest[16])
{
   MD5 md5;

   md5.Init();
   md5.Update(data, length);
   md5.Final(digest);
}

Generated by  Doxygen 1.6.0   Back to index